Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685020

RESUMO

Nanomaterials and nanostructures provide new opportunities to achieve high-performance optical and optoelectronic devices. Three-dimensional (3D) surfaces commonly exist in those devices (such as light-trapping structures or intrinsic grains), and here, we propose requests for nanoscale control over nanostructures on 3D substrates. In this paper, a simple self-assembly strategy of nanospheres for 3D substrates is demonstrated, featuring controllable density (from sparse to close-packed) and controllable layer (from a monolayer to multi-layers). Taking the assembly of wavelength-scale SiO2 nanospheres as an example, it has been found that textured 3D substrate promotes close-packed SiO2 spheres compared to the planar substrate. Distribution density and layers of SiO2 coating can be well controlled by tuning the assembly time and repeating the assembly process. With such a versatile strategy, the enhancement effects of SiO2 coating on textured silicon solar cells were systematically examined by varying assembly conditions. It was found that the close-packed SiO2 monolayer yielded a maximum relative efficiency enhancement of 9.35%. Combining simulation and macro/micro optical measurements, we attributed the enhancement to the nanosphere-induced concentration and anti-reflection of incident light. The proposed self-assembly strategy provides a facile and cost-effective approach for engineering nanomaterials at 3D interfaces.

2.
Micromachines (Basel) ; 10(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561630

RESUMO

Organic-inorganic hybrid solar cells composed of p-type conducting polymer poly (3,4-ethylene-dioxythiophene): polystyrenesulfonate (PEDOT: PSS) and n-type silicon (Si) have gained considerable interest in recent years. From this viewpoint, we present an efficient hybrid solar cell based on PEDOT: PSS and the planar Si substrate (1 0 0) with the simplest and cost-effective experimental procedures. We study and optimize the thickness of the PEDOT: PSS film to improve the overall performance of the device. We also study the effect of ethylene glycol (EG) by employing a different wt % as a solvent in the PEDOT: PSS to improve the device's performance. Silver (Ag) was deposited by electron beam evaporation as the front and rear contacts for the solar cell device. The whole fabrication process was completed in less than three hours. A power conversion efficiency (PCE) of 5.1%, an open circuit voltage (Voc) of 598 mV, and a fill factor (FF) of 58% were achieved.

3.
Nanotechnology ; 28(27): 275202, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28531089

RESUMO

The heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency. In this study, we propose an efficient and low-cost plasmonic hot electron NIR photodetector based on a Au nanoparticle (Au NP)-decorated Si pyramid Schottky junction. The large-area and lithography-free photodetector is realized by using an anisotropic chemical wet etching and rapid thermal annealing (RTA) of a thin Au film. We experimentally demonstrate that these hot electron detectors have broad photoresponsivity spectra in the NIR region of 1200-1475 nm, with a low dark current on the order of 10-5 A cm-2. The observed responsivities enable these devices to be competitive with other reported Si-based NIR hot electron photodetectors using perfectly periodic nanostructures. The improved performance is attributed to the pyramid surface which can enhance light trapping and the localized electric field, and the nano-sized Au NPs which are beneficial for the tunneling of hot electrons. The simple and large-area preparation processes make them suitable for large-scale thermophotovoltaic cell and low-cost NIR detection applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...